Sensitivity of MCMC-based analyses to small-data removal

Abstract

If the conclusion of a data analysis is sensitive to dropping very few data points, that conclusion might hinge on the particular data at hand rather than representing a more broadly applicable truth. How could we check whether this sensitivity holds? One idea is to consider every small subset of data, drop it from the dataset, and re-run our analysis. But running MCMC to approximate a Bayesian posterior is already very expensive; running multiple times is prohibitive, and the number of re-runs needed here is combinatorially large. Recent work proposes a fast and accurate approximation to find the worst-case dropped data subset, but that work was developed for problems based on estimating equations – and does not directly handle Bayesian posterior approximations using MCMC. We make two principal contributions in the present work. We adapt the existing data-dropping approximation to estimators computed via MCMC. Observing that Monte Carlo errors induce variability in the approximation, we use a variant of the bootstrap to quantify this uncertainty. We demonstrate how to use our approximation in practice to determine whether there is non-robustness in a problem. Empirically, our method is accurate in simple models, such as linear regression. In models with complicated structure, such as hierarchical models, the performance of our method is mixed.

Tin Nguyen
Tin Nguyen
Quantitative Researhcer