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Motivating data analysis: topic modelling
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How to set the 
number of 
topics?

Efficient/simple 
algorithms to 
estimate the 
latent topics?

Nonparametric models are flexible, but computationally expensive

“Barcelona has both a soccer 
and a basketball team.”

“Bernie Sanders is an advocate 
for universal healthcare and 
taxing the rich. ”
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Outline
● BNP for flexible modeling

● Finite approximations allow us to use BNP in practice

● Which finite approximation to use? Independent (IFA) versus truncation (TFA)
○ How to construct general, arbitrarily accurate IFAs
○ IFAs are conceptually easier to use
○ Theoretical comparison of IFAs to TFAs
○ Empirical comparison of IFAs to TFAs
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Why completely random measures (CRMs)?
● Number of communities is unknown and grows with number of observations

● Topic modeling [Teh et al. 2006]: communities-topics, observations-documents
● Dictionary learning [Zhou et al. 2009]: communities-low-level image features.
● Interest groups [Palla et al. 2012], Speaker diarization [Fox et al. 2010] ...
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● Postulate that the population has an infinite 
number of communities
○ Completely random measure = countably 

infinite collection of (rate, topic) tuples
○ Finitely many tuples appear in any finite 

data set

Illustration of (rate,topic). 
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Finite approximations for faster inference
● Inference in infinite-dimensional models is hard/slow.

○ Can’t update a countable infinity of parameters.
○ Collapsing [Griffiths et al. 2011] and slice sampling [Walker 2007] are slow.

● A practical alternative: finite-dimensional approximations.

Truncated finite 
approximation (TFA)
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Target CRM

Figure taken from 
https://trevorcampbell.me/

Independent
finite approximation 
(IFA)
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General construction of IFA
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● Our construction: Propose converging approximations for generic rate 
measures

● Past work: Showed converging (in distribution) approximations for special 
cases [Paisley et al. 2009, Acharya et al. 2015, Lee et al. 2016]
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IFA are conceptually easy to use
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● For common CRMs, the atoms sizes of IFA are familiar exponential family 
distributions.

● TFA almost always have complicated dependencies in the prior that make 
incorporating observations difficult.



Outline
● BNP for flexible modeling

● Finite approximations allow us to use BNP in practice

● Which finite approximation to use? Independent (IFA) versus truncation (TFA)
○ How to construct general, arbitrarily accurate IFAs
○ IFAs are conceptually easier to use
○ Theoretical comparison of IFAs to TFAs
○ Empirical comparison of IFAs to TFAs

11



● Our theoretical contributions: Finite-sample upper and lower bounds on IFA 
quality. 
○ Worse performance of IFA in theory.

Error bounds for finite approximations

● Past finite-sample theory: TFA requires a small number of atoms for good 
approximation [Campbell, Huggins et al. 2019]. 
○ But no finite-sample understanding of IFA quality.
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IFA have worse worst-case behavior
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[Campbell, Huggins et al. 
2019]

Upper bound (typical f)

Lower bound (bad f) N/A

Assumptions: CRM is exponential-like, with no power-law behavior 
(beta, gamma processes with discount = 0)
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Our experimental contributions:
● Further confirmation of similar performance, for different models and larger 

problem sizes (N and K)
● The posterior modes of the approximations are similar to each other

Performance of finite approximations

● Past empirics: TFA and IFA can have similar performance [Kurihara et al. 2007a, 

Doshi-Velez et al. 2009].
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Experimental details
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Image denoising. 
- Data: Patches from a noisy input image. Goal: Denoise input image. 
- Metric: Peak signal-to-noise ratio.

Topic modelling. 
- Data: Wikipedia documents. Goal: Infer meaningful topics. 
- Metric: predictive log-likelihood.



IFA and TFA have similar performance across K 
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Dictionary learning with beta-Bernoulli Topic modelling with modified HDP



IFA and TFA have similar posterior modes
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Dictionary learning with beta-Bernoulli Topic modelling with modified HDP
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Conclusion
● Summary

○ Arbitrarily accurate IFAs exist for general CRMs and have simple form in 
many cases

○ TFAs are more component-efficient approximation than IFAs in the 
worst-case

○ Practically, IFAs and TFAs perform very similarly
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● Links
○ arXiv: https://arxiv.org/abs/2009.10780 
○ My contacts: https://www.mit.edu/~tdn/ 

https://arxiv.org/abs/2009.10780
https://www.mit.edu/~tdn/
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